Is noise good for us?

“Every body has their taste in noises as well as other matters; and sounds are quite innoxious, or most distressing, by their sort rather than their quantity.”
Persuasion, Jane Austen, 1817.

Jane Austen was describing the feelings of one of her characters on entering the town of Bath “driving through the long course of streets …. amidst the dash of other carriages, the heavy rumble of carts and drays, the bawling of newsmen, muffin-men and milkmen, and the ceaseless clink of pattens* …. these were noises which belonged to the winter pleasures; her spirits rose under their influence.”

This month we pick up again the issues of network resiliency, perturbations, and noise, introduced in our September and October Blogs in this series. In September’s Blog investigations were cited indicating that the speed at which an innovation moves through a network increases when there are a “greater number of errors, experimentation, or unobserved payoff shocks in the system” (also called noise or variability).

How does a network see noise? As a series of perturbations changing the network’s state. Picture kicking a network and watching the resulting impact rippling through it.

Instinctively we think of noise as something to be eliminated but as you may have already realized this is not necessarily so. Some people find listening to music to be an aid to learning (we don’t have space here to get into why music, and not just the kind we hate, may be referred to as noise). As I write this blog I feel comforted by sounds of the city coming through my open window; I find it difficult to work and learn in a completely silent environment. Likewise, for an innovation ecosystem no noise means isolation from its external environment. A completely static, isolated, network will become dysfunctional. We can probably all cite examples.

For an innovation ecosystem, good noise keeps the system, and its people, alert by being connected to the larger environment and responsive to needed change. Not-so-good-noise is, for example, a perturbation which may disrupt a key link and cause a serious malfunction not by virtue of the magnitude of the perturbation but its type. Some apparently minor event could trigger a breakdown in trust between two critical organizations which in turn create a damaging disruption.

Another way of understanding the role of noise is that some form of energy is needed to prevent self-organizing complex innovation ecosystems, which as we know from past blogs in this series, are in non-equilibrium states, from dropping into the dysfunctional, static, equilibrium state mentioned earlier.   A non-equilibrium state is called a steady state system.steady state equilibrium 4

Before relating all this to innovation ecosystems it should be noted that a steady state system is not the same as a system in equilibrium. In A and B the level of water in the container is the same, However, in A the level is maintained in a steady state as water flows out is balanced by water coming in. In B the water is in equilibrium – nothing interesting is happening.

Complex adaptive systems have “basins of stability” – as introduced in our August Blog – which are steady state systems maintained by the feeding in of external energy. In non-equilibrium thermodynamics this heat energy goes under the quaint name of “housekeeping heat.” This housekeeping heat prevents the system from falling into a non-productive, static, equilibrium state. For corporations and innovation ecosystems this equilibrium would be a kind of self-satisfied stasis. However, if this maintaining heat vanishes the system may flip into another steady state which will require new maintaining/housekeeping energy. In the language of complex adaptive systems these steady states are known as “attractors.” The need for permanent noise to continuously restructure networks resembles housekeeping heat in steady-state thermodynamics.

Features of a steady state:

  • Conditions are stable within the system
  • Energy is continuously put into the system (housekeeping heat)
  • Over time, the system is maintained in a higher state of order than its surroundings

Features of an equilibrium:

  • Conditions are stable within the system
  • Net free energy either enters or escapes the system
  • Over time, any difference in entropy (state of disorder) between the system and the external environment tends to disappear

Thus, equilibrium is a special case of a steady state.

To sum up: noise can be a friend or an enemy to innovation ecosystems depending on whether it keeps the system alert or damages critical parts of the network. Jane Austin was right; it is the sort of noise that matters.

* A patten is the model of the required casting made in wood metal or plastics. it is used to produce the mould cavity in sand.

Next time: End of the year recap on what these blogs have told us about the practicalities of Rainforest Innovation Ecosystems.

All blogs in this series can be found at

One Comment on “Is noise good for us?”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s